Из книги "Математики тоже шутят": 1. Логичный вывод
Однажды Евклида спросили:
— Что бы ты предпочел — два целых яблока или же четыре половинки?
— Четыре половинки, — ответил Евклид.
— Но разве это не одно и то же?
— Конечно, нет. Ведь выбрав половинки, я сразу увижу, червивые эти яблоки или нет.
2. Каждому свое
Однажды один из учеников Евклида спросил его: «А какая мне будет практическая польза от изучения геометрии?» В ответ Евклид позвал раба и, указывая на ученика, сказал: «Дай ему монету — он ищет выгоду, а не знаний!»
3. Особый путь
В Египте времен царя Птолемея I (305–283 гг. до н.э.) было два вида дорог: одни для обычного люда и другие, более короткие и удобные, — для царя и его курьеров.
Решив как-то изучить геометрию, Птолемей обнаружил, что это не такое простое дело. Тогда он призвал к себе Евклида и спросил, нет ли более легкого пути для ее изучения.
— В геометрии нет царских путей! — гордо ответил Евклид.
4. Главное достижение
Говорят, что академик Колмогоров (1903–1987) очень гордился выведенной им формулой, описывающей женскую логику:
«Если из А следует В, и В приятно, то А — истинно».
5. Точный перевод
Делая доклад на русском языке на Международной топологической конференции в Баку (1987), академик С. П. Новиков (р. 1938) в какой-то момент оговорился, произнеся окончание фразы на англо-русском:
— ...международное комьюнити.
Переводчик машинально среагировал:
— ...интернешнл сообщество.
6. У меня тоже
В начале 1940-х годов одна американская школьница пожаловалась Эйнштейну на проблемы с математикой, которая давалась ей с большим трудом. В ответ он со свойственной ему иронией ответил:
— Не огорчайтесь из-за ваших трудностей с математикой. Поверьте, что мои трудности еще более велики.
7. Таблица умножения
Известный немецкий алгебраист Эрнст Эдуард Куммер (1810–1893) очень плохо умел считать в уме. Если при чтении лекции ему надо было выполнить простенький расчет, он обычно прибегал к помощи студентов.
Однажды ему надо было умножить 7 на 9. Он начал вслух рассуждать:
— Гм... это не может быть 61, потому что 61 — простое число. Это не может быть и 65, потому что 65 делится на 5. 67 — тоже простое число, а 69 — явно слишком много. Остается только 63...
(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)
8. Скромный автор
Рассказывают, что знаменитый французский математик и просветитель Жан Даламбер (1717–1783) каждый раз, когда излагал студентам собственную теорему, неизменно говорил: «А сейчас, господа, мы переходим к теореме, имя которой я имею честь носить!» [1]
9. Решающий аргумент
С Даламбером связана еще одна забавная история. Как-то раз он обучал математике одного крайне бестолкового, но очень знатного ученика. После нескольких безуспешных попыток растолковать неучу доказательство простой теоремы, Даламбер в отчаянии воскликнул:
— Даю вам честное слово, месье, что эта теорема верна!
Ученик расстроено ответил:
— Почему же вы мне сразу так не сказали? Ведь вы — дворянин и я — дворянин; так что вашего слова для меня вполне достаточно.
10. Кратк-ть — сестр. тал.
Известный немецкий математик Дирихле (1895–1859) любил формулы гораздо больше слов и потому был очень молчаливым. Поэтому он обошелся без слов даже когда сообщал своему отцу телеграммой о рождении сына. В этой, наверное, самой короткой в мире телеграмме было написано вот что:
2 + 1 = 3
11. «Аббревиатурная» шутка
У одного из основателей современной топологии, академика Павла Сергеевича Александрова (1896–1982), было прозвище «Пёс». Своим появлением на свет оно обязано остроумной дарственной надписи. Ею Александров украсил экземпляр своей первой книги, подаренный другому незаурядному топологу, своему другу Павлу Самуиловичу Урысону: ПСУ от ПСА.
12. Последний шанс
Профессор Елена Сергеевна Вентцель была одновременно автором широко известного учебника по теории вероятностей и нескольких популярных повестей, написанных под псевдонимом И. Грекова (то есть ИГРЕКова). Долгие годы она преподавала в академии им. Жуковского вместе со своим мужем, генералом-майором авиации.
Однажды, спеша на лекцию, она пыталась втиснуться в переполненный дачный автобус.
— Поймите, я опаздываю на лекцию! Я профессор математики! — взывала она к совести водителя и пассажиров. — Если я сейчас не уеду, то лекция будет сорвана. — Все было напрасно.
— Я — генеральша! — в отчаянии крикнула она, исчерпав все аргументы.
Двери автобуса тут же отворились.
13. Неблагонадежная формулировка
Еще одна история про Е. С. Вентцель. В непринужденной обстановке Елена Сергеевна однажды вспомнила о бдительном редактировании ее первого задачника. В нескольких задачах шла речь о выявлении случайного брака при массовом производстве технической продукции, отпускаемой с завода большими партиями. Задача завершалась вопросом:
Какова вероятность того, что партия будет забракована?
Цензор предложил изъять столь опасную двусмысленность и согласился с противоположной:
Какова вероятность того, что партия НЕ будет забракована?
(Цит. по рукописи книги: Сворцов В. В. Лирические миниатюры. 2007.)
14. И в самом деле
Карл Фридрих Гаусс (1777–1855) не интересовался музыкой. Однажды его друг, тоже математик, но любивший музыку, повел его в концертный зал, чтобы послушать Девятую симфонию Бетховена.
После окончания концерта друг спросил Гаусса о его мнении.
— Ну и что это все доказывает? — ответствовал Гаусс.
(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)
15. Меня нет дома
Известный французский физик и математик Андре Мари Ампер (1775–1836) был невероятно рассеян. Однажды, выходя из своего дома, он мелом написал на двери: «Господа! Хозяина нет дома, приходите вечером». Вскоре Ампер вернулся обратно, но, увидев на двери эту надпись, снова ушел. Домой он пришел поздно вечером.
16. Странная доска
Однажды Ампер гулял в парке, размышляя над какой-то сложной проблемой. Неожиданно прямо перед ним возникла черная доска. Ничуть не удивившись, он по привычке достал из кармана мел и стал записывать на ней вычисления. Через несколько минут доска так же неожиданно стала медленно удаляться. Ампер стал двигаться вслед за ней, продолжая исписывать свободное пространство формулами. Однако доска двигалась все быстрее и быстрее, так что ученому приходилось чуть ли не бежать за ней. В какой-то момент преследование стало невозможным, Ампер выдохся и только тут, наконец, очнулся. Приглядевшись, он увидел, что вожделенная доска оказалась задней стенкой большой черной кареты...
17. Коварный прием
Ампер всегда радушно принимал гостей, однако каждого обязательно усаживал за шахматы, к которым питал необычайную страсть. Утомившись от изнурительной партии, которая порой длилась не один час, или явно проигрывая, гость мог быстро завершить игру в свою пользу. Для этого достаточно было глубокомысленно сказать какую-нибудь наукообразную глупость вроде того, что хлор получается в результате окисления соляной кислоты, природа магнита не зависит от электричества и так далее. Ампера настолько огорчали подобные заявления, что он тут же терял нить игры и проигрывал выигрышную партию.
18. Железная логика
Однажды, когда Норберт Винер (1894–1964) шел по территории университетского городка, его остановил студент, у которого был какой-то математический вопрос. Остановившись, Винер некоторое время обсуждал со студентом проблему. Окончив, он спросил у собеседника:
— Когда вы меня поймали, я шел туда (и указал пальцем направление) или в другую сторону?
— Вон туда.
— Ага, значит, я еще не обедал.
И математик продолжил свой путь в сторону столовой.
(Цит. по книге: Kutzler B. B. Mathematikerwitze & Mathematikwitze. 2006; перевод Ю. Фролова.)
Добавлено (21.03.2011, 16:47)
---------------------------------------------
19. Кто главный механик?
Прочитав «Небесную механику» Пьера Лапласа (1749–1827), Наполеон спросил автора, почему в его трактате отсутствует упоминание о Боге.
— Сир, — с достоинством ответил Лаплас, — я не нуждался в этой гипотезе в своих изысканиях!
20. Наименьшее сигма
Несколько забавных историй из замечательной книжки известного английского математика Джона Литлвуда «Математическая смесь», вышедшей в 1957 году и переведенной на многие языки.
В докладной записке, которую я написал (около 1917 года) для Баллистического управления, в конце была фраза «Таким образом, σ следует сделать сколь возможно малым». В печатном тексте записки этой фразы не было. Но П. Дж. Григг сказал: «Что это такое?» Едва заметное пятнышко на пустом месте в конце оказалось миниатюрнейшим σ, которое я когда-либо видел (наборщики, вероятно, обыскали весь Лондон).
(Цит. по книге: Литлвуд Дж. Математическая смесь. М., 1990.)
21. Стандартный ответ
Ландау [2] заготовлял печатные формуляры для рассылки авторам доказательств последней теоремы Ферма: «На стр. ..., строке ... имеется ошибка». (Находить ошибку поручалось доценту.)
(Цит. по книге: Литлвуд Дж. Математическая смесь. М., 1990.)
22. Оригинальный подход
О книгах Жордана говорили, что если ему нужно было ввести четыре аналогичные или родственные величины (такие, как, например, a, b, c, d), то они у него получали обозначения a, M3, ε2, Π"1,2.
(Цит. по книге: Литлвуд Дж. Математическая смесь. М., 1990.)
23. Педант
Один педантичный профессор имел обыкновение говорить: «...полином четвертой степени
ax4 + bx3 + cx2 + dx + e,
где e не обязано быть основанием натуральных логарифмов» (но может им быть).
(Цит. по книге: Литлвуд Дж. Математическая смесь. М., 1990.)
24. Рассеянный профессор
Научным руководителем одного моего знакомого N. в студенческие годы был известный тополог, профессор мехмата МГУ Ю. М. Смирнов, живший долгие годы в Главном здании университета, в корпусе для преподавателей. Как-то раз N. стал договариваться с ним о времени консультации по поводу курсовой работы.
— А вы приходите ко мне завтра домой, часика в 4, там и поговорим, — сказал Смирнов. — Я живу тут рядом, в зоне L., на пятом этаже, квартира шестнадцать.
Видя, что его ученик достал ручку, чтобы записать адрес, профессор добавил:
— Это легко запомнить: два в пятой как раз шестнадцать.
Но ведь два в пятой степени это тридцать два, чуть не вырвалось у N. Но потом он подумал, что уже много лет профессор сообщал своим многочисленным ученикам и знакомым математикам именно такую «мнемоническую» формулу, и никто его до сих пор не поправил и... тоже промолчал.
25. Как аукнется...
Ректору Ленинградского Университета известному геометру профессору А. Д. Александрову на стол легло заявление «Прошу принять меня в ОСПИРАНТУРУ...» В ответ он наложил резолюцию «АТКАЗАТЬ».
(Цит. по книге: Славутский И.Ш. И в шутку и всерьез о математике. СПб., 1998.)
26. Самое тупое
Знаменитый немецкий математик Давид Гильберт (1862–1943) однажды сказал, что если собрать вместе десять самых умных людей и попросить их придумать самую глупую вещь на свете, то им не удастся придумать ничего более тупого, чем астрология.
27. Этимология по Гильберту
На одной из своих лекций Гильберт сказал:
— Каждый человек имеет некоторый определенный горизонт. Когда он сужается и становится бесконечно малым, он превращается в точку. Тогда человек говорит: «Это моя точка зрения».
28. Заступился
Известный американский физик и математик, один из создателей векторного анализа Джозайя Гиббс (1839–1903), был очень неразговорчивым человеком и обычно молчал на заседаниях Ученого Совета Йельского университета, в котором преподавал. Но однажды он не сдержался.
На одном из заседаний зашел спор о том, чему больше уделять внимания в новых программах — иностранным языкам или математике. Не выдержав, Гиббс поднялся с места и произнес целую речь: «Математика — это язык!»
29. Два в одном
Один философ испытал сильнейшее потрясение, узнав от Бертрана Рассела, что из ложного утверждения следует любое утверждение. Он спросил:
— Вы всерьез считаете, что из утверждения «два плюс два — пять» следует, что вы — папа римский?
Рассел ответил утвердительно.
— И вы можете доказать это? — продолжал сомневаться философ.
— Конечно! — последовал уверенный ответ, и Рассел тотчас же предложил такое доказательство.
1. Предположим, что 2 + 2 = 5.
2. Вычтем из обеих частей по два: 2 = 3.
3. Переставим левую и правую части: 3 = 2.
4. Вычтем из обеих частей по единице: 2 = 1.
Папа Римский и я — нас двое. Так как 2 = 1, то папа римский и я — одно лицо. Следовательно, я — папа римский.
(Цит. по книге: Рэймонд М. Смаллиан. Как же называется эта книга? М., 1981.)
30. Непустое место
В годы моего студенчества деканом мехмата МГУ был член-корреспондент Академии наук Лупанов. Удивительно, но и спустя 30 лет он на том же посту (и почти так же выглядит), как некая мехматская константа. Вот одна из историй про него уже от студентов нового поколения, выловленная на мехматском сайте.
История случилась весной несколько лет назад в ГЗ МГУ [3].
На мехмате деканом был как и сейчас Олег Борисович Лупанов («Самый лучший из деканов — наш декан Олег Лупанов»).
Ведет дискретную математику и матлогику. Но для полного понимания истории надо особо отметить одну вещь: он маленького роста (не карлик, но 1 м 50 см в нем вряд ли наберется). И вот, после пары, народ пулей летит в лифт, лифт моментально наполняется. А в углу лифта, закрытый широкими спинами студентов, стоял наш декан. Лифт битком. И вот кто-то подбегает к лифту и, указывая в угол, говорит:
— Ну подвиньтесь! Там ведь пустое место!
Все улыбаются. И тут из глубины лифта голос:
— Я не пустое место! Я — ваш декан!
31. Дефект обучения
Еще одна история из всемирной паутины.
Немецкий математик Феликс Клейн (1849–1925), вплотную занимавшийся вопросами математического обучения, перед началом первой мировой войны организовал международную комиссию по реорганизации преподавания. Занимаясь немецкими гимназиями, он присутствовал на нескольких уроках. На одном из них, когда речь зашла о Копернике, Клейн спросил:
— Когда родился Коперник?
В дальнейшем дискуссия протекала следующим образом.
— Если не знаете даты рождения и смерти, скажите, хотя бы, в каком веке он жил? — спросил Клейн.
Гробовое молчание.
— Скажите, жил он до нашей эры или нет? — вновь спросил Клейн.
— Конечно, до нашей эры, — ответил класс с твердым убеждением.
Клейн отмечает: «Школа должна была добиться, чтобы ученики, отвечая на этот вопрос, хотя бы, не употребляли слово "конечно"».
32. Строгое определение
Отвечая на вопрос, что такое математика, известный русский математик Андрей Марков (1856–1922) сказал: «Математика — это то, чем занимаются Гаусс, Чебышев, Ляпунов, Стеклов и я».
33. Когда калькуляторов еще не было
Знаменитый французский математик, «князь дилетантов» Пьер Ферма (1601–1665) однажды получил письмо, в котором его спрашивали, является ли число 100895598169 простым. Ферма мгновенно ответил, что это двенадцатизначное число — произведение двух простых чисел 898423 и 112303.
34. Логарифмы и магия
Изобретатель логарифмов Джон Непер (1550–1617) имел репутацию чернокнижника и колдуна, чем он однажды остроумно воспользовался.
Как-то раз в его доме случилась кража. Виновником мог быть только кто-то из слуг, но кто именно, непонятно. И тогда Непер придумал хитрый ход. Собрав всех своих слуг, он объявил им, что его черный петух умеет читать тайные мысли людей и поэтому поможет ему найти вора. После этого Непер приказал слугам поодиночке заходить в темную комнату и касаться рукой сидящего там черного петуха. Как только вор коснется петуха-телепата, добавил он, тот громко закричит.
Слуги по очереди стали заходить «на прием» к петуху, но тот так и не закричал. Однако Непер легко вычислил вора, проверив руки испытуемых после петушиного «теста». Руки невиновных были испачканы золой, которой хитроумный хозяин предварительно обсыпал петуха. Злоумышленник же испугался ясновидящей птицы и, войдя к нему в комнату, не коснулся его. Поэтому его руки, в отличие от совести, были чистыми.
35. Разные решения
Однажды один студент попросил Джона фон Неймана (1903–1957) помочь ему вычислить какой-то интеграл. Немного подумав, тот дал ответ: «2π/5».
— Но, сэр, — расстроился студент, — ответ я могу и сам посмотреть в конце задачника. Мне непонятно, как взять этот интеграл!
— Хорошо, — ответил профессор, — дайте-ка я посмотрю еще разок. — После небольшой паузы он опять выдал: 2π/5.
— Профессор, — студент был близок к отчаянию, — ответ я и сам знаю. Я не понимаю, как он получается!
— Но, молодой человек, — искренне удивился фон Нейман. — Что Вы от меня хотите? Я решил вам эту задачу двумя разными способами!
36. Кратчайшим способом
Есть хорошо известная задача — о мухе и двух встречных поездах. Два поезда, между которыми 200 км, мчатся со скоростью 50 км/ч навстречу друг другу по одной колее. В начальный момент времени с ветрового стекла одного из локомотивов взлетает муха и со скоростью 75 км/ч летит навстречу другому. Долетев до него, она поворачивает и летит обратно, затем опять летит ко второму локомотиву и так далее. Спрашивается, какое расстояние в итоге пролетит муха до того момента, когда оба поезда, столкнувшись, раздавят ее в лепешку?
Эту задачу можно решать двумя способами: трудным, «в лоб», и легким. В первом случае, учитывая, что с каждым из поездов муха до своей нелепой гибели успеет встретиться бесконечно много раз, придется найти сумму бесконечного ряда расстояний, преодоленных мухой от одного поворота до другого. Это реально, но для получения ответа не обойтись без вычислений на бумаге и некоторого количества времени.
Легкое же решение можно проделать в уме: поезда находятся на расстоянии 200 км и сближаются с суммарной скоростью 100 км/ч. Значит, они столкнутся через 2 часа. Все это время муха находится в полете, летя со скоростью 75 км/ч. Поэтому она пролетит в итоге 150 км.
Когда знаменитому математику Джону фон Нейману приятель предложил эту задачу, то он, задумался лишь на мгновенье.
— Ну, конечно же, 150 км! — сказал он.
— Но как вам удалось так быстро получить ответ? — спросил приятель?
— Я просуммировал ряд, — ответил фон Нейман.
Добавлено (21.03.2011, 17:34)
---------------------------------------------
Четырехмерное пространство вообразить довольно просто. Для этого достаточно представить четыре ортонормированных вектора. Остальное приложится.
***
Сейчас я расскажу о методе ортогонализации Грамма-Шмидта, который я очень люблю за его звучное название.
***
Если эти условия выполняются, говорят, что функция имеет компактный носитель. Это выражение модно среди математиков, как среди вас, студентов, модно выражение «не фонтан».
***
Мне чрезвычайно лестно первым познакомить вас с великолепным методом Фурье.
***
Итак, прошу вас освободить кору головного мозга для следующей теоремы.
***
Сегодня предстоит интересная лекция... По крайней мере для меня.
***
Задачи будут интересные. Одну из них сейчас решает вся кафедра. Если решит, мы ее включим в экзаменационную работу.
***
Сами разбирайтесь, верно или нет, мое дело написать.
***
Я рисовал так, чтобы было ясно, что разобрать здесь что-нибудь совершенно невозможно.
***
...Я буду рисовать на двумерной доске, поскольку рисовать в n-мерном пространстве довольно затруднительно.
***
Теорема о существовании
Какую бы глупость вы ни придумали, найдется человек, который эту глупость сделает
(Это теорема Эмми Нётер. Нётер, как известно, была женщиной).
***
На «б» называется — функция Бесселя.
***
Сейчас я провозглашу торжественное определение!
***
Если лягушкам давать яд дигиталис, то они дохнут по такому же нормальному закону, какой я написал.
***
Чтобы вывести эту формулу, мне достаточно спинного мозга.
***
Зачем мне думать о знаке? Я же не студент.
***
Уж и не знаю, как вы там привыкли рисовать (n–1)-мерную гиперплоскость.
***
Что я и доказал с присущим мне остроумием.
***
Вот ось. Назовем ее ξ, для простоты...
***
Возьмем ε > 0. Нет, не будем брать ε > 0. Зачем? Ведь жизнь не только из ε > 0 состоит.
***
Вы увидите, что вы родились с мерой Жордана, и первым словом, что вы сказали, было слово «мама», а вторым — «мера Жордана».
***
Что больше — дельта большое или дельта маленькое?
***
Сейчас вылезут пипополамы.
***
Этот метод называется методом «тыка», или, по-научному, — «метод Монте-Карло».
***
Таким образом математика из науки чисто теоретической стала наукой экспериментальной.
***
Эти вычисления я проведу в уме, так что вам несложно будет их проверить.
***
И учтите: это не какая-нибудь ерундовина, это самая могучая теорема анализа!
***
Так как ε — произвольное, то его можно стереть.
***
Вместо того, чтобы думать, интегрируема функция или нет, надо просто взять ее и проинтегрировать.
***
Когда говорят, что z^2 + 1 = 0 не имеет действительных решений, то это чудовищное преувеличение!
***
Чтобы не забыть, я хочу сразу пожелать вам успеха на контрольной.
***
Нам заданы три параметра: объемище, объем и объемчик.
***
Если мы будем задавать что-нибудь совсем по-бестолковому, то это будет ни на что не похоже.
***
Дайте-ка я покрупнее нарисую бесконечно малые треугольники.
***
...Подтасовка — плод деятельности поколения математиков.
***
Вот уже пять минут я ничего не говорю, а вы все пишете и пишете...
***
Ради этой книжки каждый уважающий себя студент должен продать пиджак.
***
Возьмем произвольное число n... Нет, мало — m!
***
Представьте, что я центр мира, а от меня расходятся векторы.
***
Теорема не предвещала ничего опасного, она, казалось, утверждала, что жизнь прекрасна.
***
Полное имя этого объекта есть «полный дифференциал». Мы будем называть его уменьшительно, ласково, «дифференциалом».
***
2 + 3 будет 6, извините, 5, я немного забежал вперед.
***
Извините, я ошибся. Сотрите там у себя...
***
Эллипс нужно рисовать, взяв треугольную ниточку.
***
— Область — это очень хорошо. Знаете, почему математики так любят работать с областями? Это здорово. Я сейчас объясню. Область — это...
Голос с места:
— Связное открытое множество!
—Верно.
***
Если я бьюсь головой о стенку, то всегда есть некоторая вероятность, что я попаду в соседнюю аудиторию не сломав стенки.
***
Я сейчас или соображу или подсмотрю... Нет, кажется я соображаю.
***
Забудьте это еще раз и навсегда!
***
Будем менять знак от минус бесконечности до плюс бесконечности.
***
Вот. Неравенство треугольника. Треугольник — это не фамилия.
***
У нас такой зарок: в одну лекцию больше трех звездочек не вводить!
***
Вы меня извините, что я иногда пишу слева направо...
***
Эта функция интересна тем, что ее производная равна самой себе.
***
Иногда я делаю ошибки, иногда несу чушь. Но вы должны различать.
***
Легко убедиться, что эта функция бесконечно дифференцируема. Сейчас мы продифференцируем один раз, а дома вы закончите...
Добавлено (21.03.2011, 17:43)
---------------------------------------------
Что лучше: вечное блаженство или бутерброд с ветчиной? На первый взгляд кажется, что вечное блаженство лучше, но в действительности это не так! Судите сами. Что лучше вечного блаженства? Ничто. А бутербод с ветчиной лучше, чем ничего.
Следовательно, бутерброд с ветчиной лучше, чем вечное блаженство.
Только неграмотный математик на вопрос «Как найти площадь Ленина?» ответит: «Надо его длину умножить на ширину...» А грамотный скажет, что надо взять интеграл по поверхности!
Преподаватель матанализа ностальгирует:
— Когда я был студентом, за 30 копеек можно было купить комплексный обед!
Вся группа хором:
— Ага! Чисто мнимый!
Ректор университета мрачно просматривает смету расходов, которую принес декан физического факультета:
— И почему это у физиков всегда такое дорогое оборудование? Вот берите пример с математиков, они просят деньги только на бумагу, карандаши и ластики.
Немного подумав, добавляет:
— А философы еще лучше. Им даже ластики не нужны.
Математик идет по улице и видит афишу — «Выступает камерный хор». Заинтересовавшись, покупает билет и идет на концерт. Вскоре выходит разочарованный:
— Частный случай, k равно трем.
Добавлено (21.03.2011, 17:46)
---------------------------------------------
49. Ключевой вопрос математики
"Не все ли равно?"
Добавлено (21.03.2011, 17:49)
---------------------------------------------
На лавочке в парке сидят две блондинки и обсуждают уравнения Лагранжа для голономной системы с идеальными нестационарными связями. Вдруг, видят, к ним приближается симпатичный мужчина.
— Шухер! — быстро говорит одна из блондинок. — Обсуждаем телесериал...
Добавлено (21.03.2011, 17:52)
---------------------------------------------
Математику, физику, химику и филологу предложили одну и ту же задачу: измерить высоту башни с помощью барометра.
Первым за дело взялся химик. Он измерил давление на крыше башни и у ее подножия, после чего выяснил, что ее высота от 0 до 100 метров.
Физик сбросил барометр с крыши, засек время падения и вычислил, что высота башни от 70 до 80 метров.
Математик поставил барометр на землю, измерил его высоту, длину тени, а также длину тени башни, после чего из подобия треугольников выяснил, что высота башни от 74 до 75 метров.
Филолог же продал барометр, на вырученные деньги напоил сторожа, и тот рассказал ему, что высота башни ровно 74 метра 63 сантиметра
Добавлено (21.03.2011, 17:55)
---------------------------------------------
Математик приходит в фотостудию:
— Сделайте мне, пожалуйста, фотографии с этой пленки.
— 9 x 13?
— 117, а что?
Добавлено (21.03.2011, 18:02)
---------------------------------------------
Инструктор по прыжкам с парашютом говорит новобранцам:
— Главное, не бойтесь вы этой дурацкой статистики! Поняли? По статистике не раскрывается только один парашют из тысячи. А вас здесь всего-то двести человек.
Добавлено (21.03.2011, 18:04)
---------------------------------------------
Жили-были две монашки. Одна (обозначим ее М.) изучала математику, а вторая (соответственно Л.) увлекалась логикой. Прогуливаются они как-то вечерком по парку, и тут за ними увязывается мужчина.
— Ты заметила, — спрашивает Л., — мужчину, который вот уже полчаса идет за нами?
— Конечно, заметила, — отвечает М. — Интересно, что ему надо.
— Но это же логично! — говорит Л. — Он хочет нас изнасиловать.
— О Боже! — ужасается М. и после минуты вычислений добавляет: — При такой скорости передвижения он настигнет нас через пять минут. Что же нам делать?
— Единственное логичное решение, — говорит Л., — это идти быстрее.
М. согласилась, и они пошли быстрее. Однако через несколько минут М. опять забеспокоилась:
— Ну вот, мы идем быстрее, но расстояние между нами сокращается.
— Но это же естественно, — отвечает Л. — Мужчина поступил совершенно логично. Он тоже стал идти быстрее.
— Так что нам теперь делать? — нервно спрашивает М., опять проделав в уме некоторые вычисления. — При таком развитии событий он догонит нас через две минуты.
— Логичным будет разделиться. Он не сможет идти за нами двумя сразу.
Они разделились, и потенциальный маньяк пошел-таки за Л. В итоге М. одна добралась до монастыря и долго переживала, что ее подруги все еще нет. Наконец Л. появилась, и между ними произошел такой диалог.
М: — Слава Господу, ты уже здесь! Расскажи же, что произошло?
Л: — Единственное, что подсказывала логика. Я начала бежать.
М: — И дальше?..
Л: — Весьма логично: он настиг меня.
М: — И потом?!..
Л: — Единственное логичное действие с моей стороны — я задрала вверх платье.
М: — О, Боже!! Что он сделал потом?
Л: — Он поступил столь же логично — спустил штаны.
М: — И?!!
Л: — Ну разве это не логично, дорогая? Монахиня с задранным вверх платьем бежит намного быстрее, чем мужик со спущенными штанами.